Edgewise and subgraph-level tests for brain networks.
نویسندگان
چکیده
Resting-state functional magnetic resonance image is a useful technique for investigating brain functional connectivity at rest. In this work, we develop flexible regression models and methods for determining differences in resting-state functional connectivity as a function of age, gender, drug intervention, or neuropsychiatric disorders. We propose two complementary methods for identifying changes of edges and subgraphs. (i) For detecting changes of edges, we select the optimal model at each edge and then conduct contrast tests to identify the effects of the important variables while controlling the familywise error rate. (ii) We adopt the network-based statistics method to improve power by incorporating the graph topological structure. Both methods have wide applications for low signal-to-noise ratio data. We propose stability criteria for the choice of threshold in the network-based statistics procedure and utilize efficient massive parallel procedure to speed up the estimation and inference procedure. Results from our simulation studies show that the thresholds chosen by the proposed stability criteria outperform the Bonferroni threshold. To demonstrate applicability, we use both methods in the context of the Oxytocin and Aging Study to determine effects of age, gender, and drug treatment on resting-state functional connectivity, as well as in the context of the Autism Brain Imaging Data Exchange Study to determine effects of autism spectrum disorder on functional connectivity at rest. Copyright © 2016 John Wiley & Sons, Ltd.
منابع مشابه
Optimal Coding Subgraph Selection under Survivability Constraint
Nowadays communication networks have become an essential and inevitable part of human life. Hence, there is an ever-increasing need for expanding bandwidth, decreasing delay and data transfer costs. These needs necessitate the efficient use of network facilities. Network coding is a new paradigm that allows the intermediate nodes in a network to create new packets by combining the packets recei...
متن کاملDiagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملUsing a Fuzzy Rule-based Algorithm to Improve Routing in MPLS Networks
Today, the use of wireless and intelligent networks are widely used in many fields such as information technology and networking. There are several types of these networks that MPLS networks are one of these types. However, in MPLS networks there are issues and problems in the design and implementation discussion, for example security, throughput, losses, power consumption and so on. Basically,...
متن کاملDetection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals
Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 35 27 شماره
صفحات -
تاریخ انتشار 2016